Nonlinear Dynamic Response of Functionally Graded Porous Plates on Elastic Foundation Subjected to Thermal and Mechanical Loads
Authors
Abstract:
In this paper, the first-order shear deformation theory is used to derive theoretical formulations illustrating the nonlinear dynamic response of functionally graded porous plates under thermal and mechanical loadings supported by Pasternak’s model of the elastic foundation. Two types of porosity including evenly distributed porosities (Porosity-I) and unevenly distributed porosities (Porosity-II) are assumed as effective properties of FGM plates such as Young’s modulus, the coefficient of thermal expansion, and density. The strain-displacement formulations using Von Karman geometrical nonlinearity and general Hooke’s law are used to obtain constitutive relations. Airy stress functions with full motion equations which is employed to shorten the number of governing equations along with the boundary and initial conditions lead to a system of differential equations of the nonlinear dynamic response of porous FGM plates. Considering linear parts of these equations, natural frequencies of porous FGM plates are determined. By employing Runge-Kutta method, the numerical results illustrate the influence of geometrical configurations, volume faction index, porosity, elastic foundations, and mechanical as well as thermal loads on the nonlinear dynamic response of the plates. Good agreements are obtained in comparison with other results in the literature.
similar resources
On Symmetric and Asymmetric Buckling Modes of Functionally Graded Annular Plates under Mechanical and Thermal Loads
In the present article, buckling analysis of functionally graded annular thin and moderately thick plates under mechanical and thermal loads is investigated. The equilibrium and stability equations of the plate are obtained based on both classical and first order shear deformation plate theories. By using an analytical method, the coupled stability equations are converted to independent equatio...
full textVibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads
In the present work, study of the vibration of a functionally graded (FG) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. Free vibration analysis is presented for FG cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. The equations of motion are derived by Hamilton...
full textFree Vibration Analyses of Functionally Graded CNT Reinforced Nanocomposite Sandwich Plates Resting on Elastic Foundation
In this paper, a refined plate theory is applied to investigate the free vibration analysis of functionally graded nanocomposite sandwich plates reinforced by randomly oriented straight carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses only four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, and satis...
full textvibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads
in the present work, study of the vibration of a functionally graded (fg) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. free vibration analysis is presented for fg cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. the equations of motion are derived by hamilton...
full textDynamic Stability of Functionally Graded Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation
This paper studies dynamic stability of functionally graded beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The Young’s modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing dynamic equation is established. The eff...
full textVibration and Static Analysis of Functionally Graded Porous Plates
This research deals with free vibration and static bending of a simply supported functionally graded (FG) plate with the porosity effect. Material properties of the plate which are related to its change are position-dependent. Governing equations of the FG plate are obtained by using the Hamilton’s principle within first-order shear deformation plate theory. In solving the problem, the Navier s...
full textMy Resources
Journal title
volume 4 issue 4
pages 245- 259
publication date 2018-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023